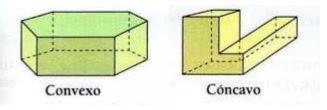

CUERPOS GEOMÉTRICOS

Portada: Ángel Villar Heras. Álvaro Sánchez Núñez. Eduardo Arboledas Paredes. Julia Élez López. Rebeca Dumitru. Lucía Fernández Jiménez. Betty Muñoz Paredes. ylo

CUERPO GEOMÉTRICO ó sólido es una figura tridimensional y por lo tanto ocupa un volumen en el espacio.

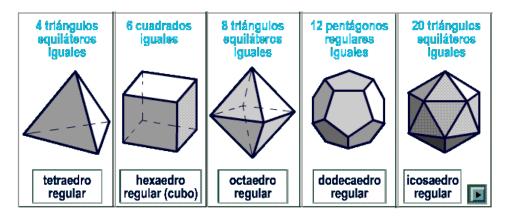
De una forma muy general podemos clasificarlos en POLIEDROS y CUERPOS de REVOLUCIÓN (o cuerpos "redondos"). Los demás se forman por uniones de éstos.


1. POLIEDROS

(del griego clásico πολύεδρον (polyedron), de la raíz πολύς (polys), «muchas» y de

έδρα (edra), «base», «asiento», «cara»).

Un **POLIEDRO** es un cuerpo geométrico cuyas caras son planas.


Existen poliedros **cóncavos** y

poliedros **convexos**; en general un poliedro cóncavo se puede formar por unión de poliedros convexos.

1.1. POLIEDROS REGULARES

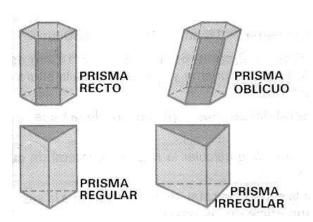
Son poliedros cuyas caras son polígonos regulares, todas ellas iguales. Sólo existen cinco:

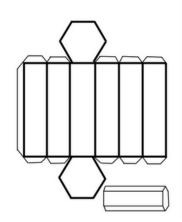
Los poliedros regulares cumplen el teorema de Euler C+V=A+2

Poliedro	Caras del poliedro	Nº Vértices	Nº Caras	Nº Aristas	Fórmula de Euler V + C = A + 2
Tetraedro	Triángulos	4	4	6	4 + 4 = 6 + 2
Cubo	Cuadrados	8	6	12	8 + 6 = 12 + 2
Octaedro	Triángulos	6	8	12	6 + 8 = 12 + 2
Dodecaedro	Pentágonos	20	12	30	20 + 12 = 30 + 2
Icosaedro	Triángulos	12	20	30	12 + 20 = 30 + 2

En la tabla siguiente puedes ver sus desarrollos planos y fórmulas para hallar el área y volumen.

Poliedro regular	Desarrollo	Área	Volumen
Tetraedro		$A = a^2 \sqrt{3}$	$V = \frac{a^3\sqrt{2}}{12}$
Cubo o hexaedro		A = 6a²	V = d*
Octaedro		$A=2a^2\sqrt{3}$	$V = \frac{d^3\sqrt{2}}{3}$
Dodecaedro	**	$A = 3a^2\sqrt{25 + 10\sqrt{5}}$	$V = \frac{d^3}{4} (15 + 7\sqrt{5})$
Icosaedro	****	$A = 5a^2 \sqrt{3}$	$V = \frac{5a^3}{12}(3 + \sqrt{5})$

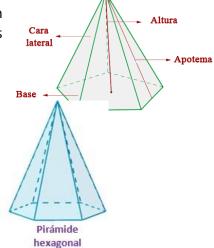

1.2. **PRISMAS**.


paralelogramos. Para nombrarlos se dice "prisma (triangular, cuadrangular, hexagonal(*)...)", según sus bases.

(*) Exagonal ó Hexagonal; puedes verlo en los textos de cualquiera de las dos maneras.

Los prismas pueden ser rectos u oblicuos, regulares e irregulares

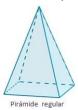
Un ORTOEDRO es un prisma recto cuya base es un cuadrado.


Aquí tienes la imagen del desarrollo plano de un prisma hexagonal recto.

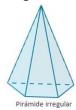
Área = $2A_B + A_L$ Volumen= $A_B \cdot altura$

1.3. PIRÁMIDES

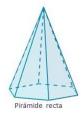
Se caracterizan por que tienen una base (es un polígono) y un vértice en el que convergen las caras laterales son triángulos.

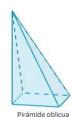

También se nombran según su base.

También pueden ser regular e irregular, recta u oblicua


Pirámide

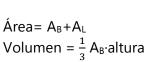
pentagonal

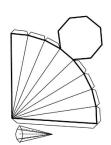

Pirámide


triangular

Pirámide

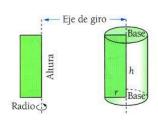
cuadrangular

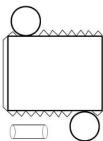




Vértice

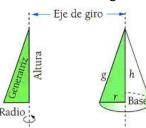
Estos son los desarrollos planos de una pirámide cuadrangular (a la izquierda) y de una octogonal (a la derecha).

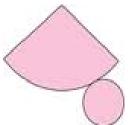



Un TETRAEDRO es una pirámide triangular cuya base es un triángulo equilátero

2. **CUERPOS DE REVOLUCIÓN** (cuerpos redondos)

Se generan por el giro de una figura plana alrededor de un eje (eje de simetría). Los principales son:

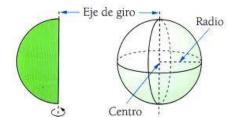

Cilindro generado por un rectángulo que gira sobre uno de sus lados



Área =
$$2A_B + A_L$$

Volumen= $A_B \cdot altura$

Cono generado por un triángulo rectángulo que gira sobre uno de sus catetos. La hipotenusa del triángulo es la generatriz.



Área=
$$A_B+A_L$$

Volumen = $\frac{1}{3} A_B \cdot altura$

Esfera se genera por un semicírculo que gira sobre su diámetro.

No tiene desarrollo plano.

Área=
$$4\pi r^2$$

Volumen= $\frac{4}{3}\pi r^3$

Puedes ver un video en https://www.youtube.com/watch?v=cuE3tRIgTss . Lo tienes expuesto el en blog JARáTICAS.